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Abstract. We study the delocalization effect of a short-range repulsive interaction on the ground state of
a finite density of spinless fermions in strongly disordered one dimensional lattices. The density matrix
renormalization group method is used to explore the charge density and the sensitivity of the ground state
energy with respect to the boundary condition (the persistent current) for a wide range of parameters (car-
rier density, interaction and disorder). Analytical approaches are developed and allow to understand some
mechanisms and limiting conditions. For weak interaction strength, one has a Fermi glass of Anderson
localized states, while in the opposite limit of strong interaction, one has a correlated array of charges
(Mott insulator). In the two cases, the system is strongly insulating and the ground state energy is essen-
tially invariant under a twist of the boundary conditions. Reducing the interaction strength from large to
intermediate values, the quantum melting of the solid array gives rise to a more homogeneous distribution
of charges, and the ground state energy changes when the boundary conditions are twisted. In individual
chains, this melting occurs by abrupt steps located at sample-dependent values of the interaction where
an (avoided) level crossing between the ground state and the first excitation can be observed. Important
charge reorganizations take place at the avoided crossings and the persistent currents are strongly enhanced
around the corresponding interaction value. These large delocalization effects become smeared and reduced
after ensemble averaging. They mainly characterize half filling and strong disorder, but they persist away
of this optimal condition.

PACS. 72.15.-v Electronic conduction in metals and alloys – 73.20.Dx Electron states in low-dimensional
structures (superlattices, quantum well structures and multilayers) – 72.10.Bg General formulation of
transport theory – 05.60.Gg Quantum transport

1 Introduction

One of the beauties of Condensed Matter Physics is the
possibility of understanding a variety of phenomena within
a (weakly interacting) quasi-particle approach, despite the
always present strong Coulomb interaction between elec-
trons. As it has been understood from the early days [1],
the applicability of one-particle approaches can be traced
to the Pauli exclusion principle, and in first approxima-
tion the interactions simply account for a renormalization
of single-particle quantities (like the effective mass or the
mean field potential felt by individual electrons).

This traditional view is challenged when studying ar-
tificially confined mesoscopic systems or very dilute low-
dimensional electron gases. Mesoscopic phenomena have
their origin in the coherence of electronic wave functions
across a small sample. The reduced dimensions are ex-
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pected to render electronic correlations more important
than in the bulk. Going to lower dimensions and/or very
dilute limits results in a poorer screening of the electron-
electron interaction, enhancing the role of Coulomb re-
pulsions. When the disorder is strong, Anderson localiza-
tion becomes also detrimental to screening, thereby fur-
ther magnifying the role of interactions.

The above considerations are closely related to three
experimental findings which have recently dominated the
attention in Mesoscopic Physics. Firstly, the large values
of the persistent current measured in metallic mesoscopic
rings [2–4] cannot be accounted by the theoretical pre-
dictions based on the single electron picture [5], nor by
perturbative approaches taking into account (to infinite
order) the effect of electron-electron interactions [6,7].
Secondly, the discovery of a metallic behavior in two-
dimensional gases of electrons (Si-MOSFET [8]) or holes
(GaAs heterostructures [9] and SiGe quantum wells [10])
is at odds with the conclusions of non-interacting theories
that predict an insulating behavior for any value of the
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disorder strength [11]. For a recent review on the metal-
insulator transition in 2D electron and hole gases see refer-
ence [12]. The metallic behavior is observed in a parameter
region of the system which is believed to be limited by its
crystallization threshold [13,14]. Finally, the conventional
view of an infinite zero-temperature quasiparticle lifetime
at the Fermi energy has been questioned by the interpre-
tation of measurements yielding a saturation of the elec-
tronic decoherence rate with decreasing temperature [15].
While a complete understanding of these findings is still
missing, it is widely accepted that they are influenced in a
non-trivial way by large interaction effects. Recent theo-
retical attempts suggest a possible relation between these
different phenomena [16–18].

In this work we study the persistent current and the
localization within a model of spinless electrons on a disor-
dered one-dimensional (1D) ring with nearest-neighbor in-
teractions. Clearly, we do not aim to describe the metallic
quasi-one dimensional rings of references [2–4] nor the two-
dimensional electron gas where the metal-insulator tran-
sition has been observed. However, the interplay between
localization and interaction can be readily studied in this
simple model. The interest on disordered one-dimensional
interacting models of fermions (with and without spin) can
also be assessed from the large variety of analytical [19–24]
and numerical [25–32] techniques that have been applied
to them.

In the absence of interactions, a 1D disordered sys-
tem is an Anderson insulator, with the electron wave-
functions localized on the scale of the one-particle local-
ization length ξ1. The dependence of the conductance on
the size M of the system is given by an exponential de-
crease, the characteristic length scale being determined by
ξ1. If the system is closed into a ring threaded by a mag-
netic flux, its orbital response (the persistent current) also
scales exponentially with M/ξ1 [33].

In rotational invariant continuum systems the per-
sistent current does not depend on any kind of interac-
tions [22,24]. This is directly connected to the fact that
the Drude weight (to be defined in the sequel) is not af-
fected by electron-electron interactions in Galilean invari-
ant systems [34]. When the rotational invariance is broken
by a lattice or by the presence of disorder, interactions can
modify the value of the persistent current [30].

The problem of spinless fermions in a disorder-free
chain with nearest-neighbor interactions is exactly solv-
able [19]. In particular, at half filling we have a Mott
insulator with a finite gap and a charge density wave
concentrated on alternating sites of the lattice. Attrac-
tive interactions favor an inhomogeneous density (cluster-
ing). Repulsive interactions favor a homogeneous density
(charge density wave or Mott insulator). Disorder tends to
distort those arrangements by favoring the occupancy of
the low potential sites. In the intermediate regime between
the Anderson and Mott insulators, disorder, interaction
and kinetic energy are relevant. The competition between
disorder and interactions that we study throughout our
work exhibits then a non-trivial character.

The localized character of an electron system deter-
mines the behavior of the conductance, which is a trans-
port property, as well as the persistent current, which is a
thermodynamic property. As first shown by Kohn [35], in
the zero temperature limit, both properties can be related.
We recall the basic ingredients of such a relationship [22,
35,36] for the particular case of the insulating regime.

The linear response of the electronic system to a
spatially uniform, time-dependent electric field is the
frequency-dependent conductivity

σ(ω) = σ1(ω) + iσ2(ω). (1)

A 1D ring containing M sites, threaded by a magnetic
flux Φ has a flux-dependent many-particle ground state
energy E(Φ). We choose units such that ~ = e2 = c =
a = 1 (a is the lattice constant), and Φ = 2π corresponds
to one flux quantum threading the ring. Kohn showed that
the second derivative of E(Φ) (the charge stiffness or Kohn
curvature)

Dc = M

(
d2E(Φ)

dΦ2

)∣∣∣∣
Φ=0

(2)

is related to the imaginary part σ2(ω) of the conductivity
through

Dc = lim
ω→0

ω σ2(ω). (3)

Using the Kramers-Kronig relations between the real
and the imaginary part of the conductivity (see, e.g. [22]),
it is found that Dc also gives the weight of the zero-
frequency peak in the real part of the conductivity

σ1(ω) = πDcδ(ω) + σreg
1 (ω). (4)

Therefore, Dc is sometimes called the Drude weight. This
establishes a link between transport properties and per-
sistent currents.

In the insulating regime the amplitude of the flux-
dependent oscillation of the ground state energy is typi-
cally much smaller than the energy gap between the many-
body ground state and the first excited state. Therefore,
it is easy to see (i.e. Sect. 4) that a perturbation the-
ory in the hopping matrix elements across the boundary
is enough to describe the flux dependence of the ground
state energy, which yields

E(Φ) = E(0)− ∆E

2
(1− cosΦ). (5)

Here ∆E = E(0)−E(π) can also be interpreted as the dif-
ference of ground state energy between periodic (Φ = 0)
and anti-periodic (Φ = π) boundary conditions, since a
magnetic flux through the ring is equivalent to introduc-
ing a change of the boundary conditions. The sign of ∆E
depends only on the parity of the number of particles N
(∆E < 0 for odd N and ∆E > 0 for even N) [37,38].

The simple Φ-dependence of the ground state energy in
equation (5) allows to relate ∆E to the persistent current

J(Φ) = −dE(Φ)
dΦ

=
∆E

2
sinΦ, (6)
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and the Drude weight

Dc = −M
2
∆E. (7)

In this paper we will work extensively with the phase
sensitivity

D = (−1)N
M

2
∆E, (8)

that for a strongly disordered one-dimensional ring is sim-
ply given by the absolute value of the Drude weight and,
at the same time, determines the magnitude of the persis-
tent current.

The possibility of a negative charge stiffness (or Dc)
arising for spinless fermions and Hubbard rings [39,40] in-
dicates that the orbital response may be paramagnetic.
This is a peculiar behavior since Dc is believed to deter-
mine the zero-frequency behavior of σ1.

The previous numerical work on interacting disor-
dered rings has necessarily been restricted to finite sam-
ples [26,27] or it has relied on strong approximations (like
Hartree-Fock [28,31]). Direct diagonalization of small sys-
tems (lattices with M = 6 and 10 sites at half filling) with
Coulomb interaction [26] yielded an (impurity) average
persistent current that is suppressed by effects of the in-
teractions except for strong disorder and weak interaction
strength, where it is weakly enhanced. Direct diagonal-
ization in one-dimensional rings of spinless fermions with
short-range interactions in lattices of up to 20 sites [27]
found that both, disorder and interactions, always de-
crease the persistent current by localizing the electrons.
The above simulation deals with values of the disorder
that are not strong in comparison with the typical ki-
netic energy of the electrons. Similar results have been
obtained in this regime using the density matrix renormal-
ization group (DMRG) method [30]. Hartree-Fock calcu-
lations also yielded a suppression of the persistent current
as the strength of the interaction increases [28].

The conclusions that we extract from our numerical
computations of the phase sensitivity are somehow differ-
ent than that of the previous numerical studies. Work-
ing at large disorder, we find that when increasing the
strength of the interactions, abrupt charge reorganizations
of the many-body ground state take place (at sample-
dependent values of the interaction strength) and are asso-
ciated with anomalously large persistent currents [41–43].
In this work we extend our previous numerical calculations
showing such an effect and we also present analytical work
aiding towards its understanding. We point out to the im-
portance of considering the physics of individual samples
and we show that the delocalization effect of interactions
persists in the thermodynamic limit.

A sizeable increase of the persistent current with
the strength of the interaction had been obtained for
moderately disordered 1D electronic systems with spin
(Anderson-Hubbard model) from renormalization group
approaches [23] or perturbation and numerical calcula-
tions [32]. Our results show that the spin does not seem
to be a necessary ingredient to obtain an enhancement of

persistent currents due to interactions. Even without spin,
repulsive interactions can increase the persistent current,
provided the disorder is important enough. This lets us
expect an even more dramatic increase at strong disorder
in models with spin.

It is interesting to remark that the enhancement of
transport properties by the effect of a repulsive interaction
has been proposed in other contexts than the one of this
work. A system with strong binary disorder, where the two
possible values of the disorder give rise to two separated
bands, presents in the absence of interactions a gap if the
filling is such that the lower band is filled completely [44].
Then, the broadening of the bands due to the interaction
can lead to an overlap allowing for metallic behavior. Also,
in a system of two interacting particles on a disordered
chain it has been shown that the localization length is
enhanced by the effect of interactions [45–48].

The remainder of the paper is organized as follows.
In Section 2, we present the model and the numerical
method. In Section 3, we perform numerical studies for
the ground state structure and the phase sensitivity for the
case of half filling. A scaling with the system size allows to
demonstrate the delocalization effect of repulsive interac-
tions in the presence of strong disorder. In Section 4, an-
alytical work is presented, which aims to describe the ba-
sic physical mechanisms leading to the effects which were
found numerically. In Section 5, we extend the numerical
studies away from half filling and establish the criterium
for observing a delocalization effect due to the interac-
tions. Finally, we present in Section 6 our conclusions and
outline some open problems.

2 Model and method

2.1 Model Hamiltonian

We consider spinless fermions on a chain with nearest-
neighbor interaction

H = −t
M∑
i=1

(c†i ci−1 + c†i−1ci) +
M∑
i=1

vini + U
M∑
i=1

nini−1

(9)

and twisted boundary conditions, c0 = exp(iΦ)cM . The
operators ci (c†i ) destroy (create) a particle on site i and
ni = c†ici is the occupation operator. The on-site random
energies vi are drawn from a box distribution of width W .
The strength of the disorder W and the interaction U are
measured in units of the kinetic energy scale ( t = 1). The
use of twisted boundary conditions allows to represent a
ring of M sites pierced by a flux Φ.

2.2 Numerical method

The numerical results are obtained with the density ma-
trix renormalization group (DMRG) algorithm [49,50].
In this method, successive iterations are obtained by
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building larger (real space) blocks from smaller compo-
nents. The Hamiltonian of each block can be diagonalized
since in each iteration we truncate the states determined
in the previous step. In the truncation process, states in
the small blocks are selected as a function of their projec-
tion on the ground state of the larger block, and not as
a function of their energies. The projection is computed
from the reduced density matrix of the smaller blocks.
The iteration of this procedure allows to calculate ground
state properties in disordered 1D systems with an accu-
racy comparable to exact diagonalization, but for much
larger systems [30].

It is important to recall that the eigenenergies of the
many-body states of the disordered ring need to be ob-
tained with large precision since the phase sensitivity is
given as the difference of ground-state energies. We can
typically achieve system sizes corresponding to 50 parti-
cles on 100 lattice sites by keeping up to 2000 states per
block, and then the largest matrices that we have to diag-
onalize have a dimension of the order of 10 millions.

3 Half filling

We will center our numerical studies on the charge den-
sity and the Φ-dependence of the ground state energy. We
start in this section by treating the case of half filling (the
number of electrons is N = M/2), leaving the case of an
arbitrary filling for Section 5.

3.1 Charge reorganization in individual samples

3.1.1 Charge density

We start our analysis with the reorganization of the
ground state induced by the nearest-neighbor (NN) re-
pulsion (Fig. 1), plotting the charge density ρ (expecta-
tion value of ni) as a function of U and site index i for
a typical sample (M = 20 and N = 10). In order to fa-
vor the inhomogeneous configuration, the disorder is taken
large (W = 9) such that the localization length (a rough
guess is given by the perturbative result for weak disorder
ξ1≈100/W 2) is of the order of the mean spacing k−1

F = 2
between the charges. For U ≈ 0, one can see a strongly
inhomogeneous density, while for large U a periodic array
of charges sets in. These two limits are separated by a
sample-dependent crossover regime.

The charge reorganization can be clearly observed in
the Fourier transform of ρ with respect to the space vari-
able i (Fig. 2). For weak interactions the Fourier transform
does not show significant structure. On the other hand, a
single peak appears above a certain interaction strength,
reflecting the establishment of a regular periodic array of
charges. For intermediate interaction strengths, there is a
tendency towards a periodic array, but defects persist and
there are still several Fourier components present.

i

U

�

Fig. 1. Charge configuration for a typical sample (d of Fig. 3)
for N = 10 particles on M = 20 sites at W = 9 as a function
of the lattice site i and the interaction strength U .

Fig. 2. Fourier transform of the charge configuration of
Figure 1.

3.1.2 Density-density correlation function

In order to quantitatively describe the sample-dependent
reorganization of the charge density, we calculate [42] the
density–density correlation function

C(r) =
1
N

M∑
i=1

ρiρi+r (10)

for values 0 ≤ r ≤ M/2. The parameter γ =
maxr{C(r)} −minr{C(r)} is used to distinguish between
the electron liquid with constant density (γ = 0), and the
regular crystalline array of charges (γ = 1). Since we in-
clude the translation r = 0 in the definition of γ, we get
γ 6= 0 for the electron glass. Thus, γ measures charge crys-
tallization from an electron liquid as well as the melting
of the glassy state towards a more liquid ground state.

Figure 3 shows the dependence of γ on the interaction
strength for four individual samples representing different
behaviors. For certain impurity configurations, like in sam-
ple a, the periodic array is obtained at a weak repulsive
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Fig. 3. Density–density correlation parameter γ for four sam-
ples with N = 10, M = 20 and W = 9. Thick dots: Average
over up to 166 samples.

interaction, while one needs a strong interaction for other
samples like b and d. Typically, γ assumes a minimum for
a small repulsive interaction at a sample-dependent value
Uc of the order of the kinetic energy scale t. This means
that the charge distribution is closest to a liquid around
Uc and suggests a maximum of the mobility of the charge
carriers. This is an indication for a delocalization of the
ground state by repulsive interactions. In addition, most
of the samples show small steps in the interval 0 ≤ U ≤ 2t,
caused by instabilities between different configurations of
similar structure. The formation of the regular array of
charges imposed by strong repulsive interactions occurs at
a sample-dependent interaction strength Um. The step-like
increase of γ shows that the regular array is established
abruptly at Um.

Typically the first and last dips of γ for repulsive U ,
signaling the above described charge reorganizations, are
separated by a transition region. In order to describe
our problem as a transition between phases we have to
consider the average behavior of γ and extract sample-
independent values of the critical interaction strengths.
The small dispersion of Uc yields an average γ present-
ing a minimum at an interaction strength UF of the or-
der of t. This demonstrates the delocalization effect of a
small repulsive interaction accompanied by a “more liq-
uid” charge density. The increase of the persistent current
in 1D models with spin was traced back to the effect of
repulsive interactions making the charge density more ho-
mogeneous [23]. The present study shows that this mech-
anism also applies for spinless fermions in strongly disor-
dered 1D chains.

Unlike the case of small U , for large interactions the
jumps of γ are widely spread and therefore smeared out
in the ensemble average. Thus, starting from the sample-
dependent values Uc and Um, it is possible to identify
a sample-independent interaction strength UF associated
with the first charge reorganization by the minimum of
〈γ〉, but the last charge reorganization does not give a
clear signature on 〈γ〉. In the next subsection we give the

estimation of the typical interaction strength needed to
establish the Mott phase. Recent works [13,51,52] on 2D
disordered clusters with Coulomb interaction also shows
that one goes from the Fermi glass towards the pinned
Wigner crystal through an intermediate regime (located
between two different Coulomb-to-Fermi energy-ratios rf

s

and rw
s ). The difference with our problem is that, in the

2D case, a topological change can be observed in the pat-
tern of the driven currents, which cannot exist in the 1D
case. However, in the two problems, we are addressing the
difficult question of the quantum melting of a solid array
of charges (Mott insulator in our case, Wigner crystal for
2D Coulomb repulsion) in the presence of a random sub-
strate. This melting can occur through a crossover regime
(or an intermediate quantum phase in 2D) where a liq-
uid of “defectons” may co-exist with an underlying solid
background, as suggested by Andreev and Lifschitz [53].

3.1.3 Size dependence of the correlation parameter

The typical interaction strength needed to establish a per-
fectly regular array of charges can be estimated from the
competition between interaction and potential energies
in some special configurations. Starting from the perfect
Mott configuration with alternating charges, we see that
we can gain potential energy by going to configurations
which are perfect only on parts of the lattice. The most
favorable of this kind should typically be the case where
the odd sites are occupied on half of the ring and the even
sites on the other half of the ring, with two domain walls
between these regions. The cost in interaction energy is
U , while the gain in potential energy is of the order of
(W/2)

√
N/2.

The periodic array over the whole system is favored
when the cost of the defect is larger than the gain in po-
tential energy. This typically happens for

U > UW =
W

2

√
N/2. (11)

At half filling (N = M/2), the critical interaction strength
UW increases as the square root of the system size. In the
dependence of the ensemble averaged correlation parame-
ter on U for different system sizes (Fig. 4) this tendency
is clearly visible. The interaction scale on which 〈γ〉 in-
creases to its maximum value 1, characterizing the Mott
insulator, is shifted to higher interaction values when the
system size is increased. In the thermodynamic limit, one
expects that no finite interaction strength (provided it is
short ranged) can be sufficient to impose a perfectly or-
dered Mott insulator in a disordered system, consistent
with the findings of references [21,54].

3.2 Phase sensitivity and localization

In this section, we present calculations of the phase sensi-
tivity of the ground state which is defined, in equation (8),
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M = 30
M = 20
M = 10

Fig. 4. Ensemble average of the density–density correlation
parameter γ as a function of the interaction strength for dif-
ferent system sizes M at half filling and W = 9.

as the energy difference between periodic (Φ = 0) and anti-
periodic (Φ = π) boundary conditions. This phase sensi-
tivity is a measure of the localization of the electronic
wave-functions. The more insulating the system is, the
weaker will be the effect of boundary conditions. As dis-
cussed in the introduction, the phase sensitivity conveys
similar information, in the localized regime, as other mea-
sures of the response of the ground state to a flux thread-
ing the ring: the Kohn curvature [35] (charge stiffness)
∝ E′′(Φ = 0) and the persistent current J ∝ −E′(Φ).

3.2.1 Phase sensitivity in individual samples

In Figure 5 we show the phase sensitivity D(U) for the
four samples presented in Figure 3, which were at half fill-
ing and with large disorder (W = 9). Both for U ≈0 and
U � 1, D(U) is very small, but sharp peaks appear at
sample-dependent values Uc, where the phase sensitivity
can be 4 orders of magnitude larger than for free fermions.
Remarkably, the curves for each sample do not present any
singularity at U = 0 which could have allowed to locate
the free fermion case (that appears simply as an interme-
diate case). Peaks can be seen at positive and negative
values of U .

It is important to notice that each peak of D(U) in an
individual sample corresponds to a charge reorganization.
This can be seen, directly, by following the evolution of the
charge density as a function of U , or more systematically,
by considering the one-to-one correspondence between the
peaks of D(U) and the dips of the density-density corre-
lation parameter γ (Fig. 3). The information of D(U) and
γ(U) is complementary, but not equivalent: strong peaks
of D (happening for small values of U) correspond to small
dips in γ, while the last charge rearrangement (leading to
the Mott phase) is associated with a large dip in γ and a
small peak (or a shoulder) of D.

The free fermion case U = 0 corresponds to an
Anderson insulator. A small repulsive interaction typically
tends to delocalize the system and increases D(U) until

a

b

c

d

U

lo
g
D

Fig. 5. Phase sensitivity D(U) for four different samples with
N = 10, M = 20, and W = 9 in (decimal) logarithmic scale.
Thick solid line and dots: average of log(D).

a charge reorganization takes place. In some cases (like
sample a), the first charge reorganization for positive U
immediately drives the system to the homogeneous array
of charges. In some other cases we go from the inhomoge-
neous density to the periodic array in a few steps signaled
by additional peaks of the phase sensitivity. Examining
the U dependence of the density of those samples, one
can note in some cases local defects in the periodic ar-
ray subsisting up to large values of U . As discussed in
Section 3.1.3, for a given interaction strength U , the ap-
pearance of defects becomes more and more likely as we
increase the system size M or the disorder W . Once the
regular array of charges is established, the system becomes
more and more rigid (pinned by the random lattice), and
D(U) decreases as a function of U . In Section 4.3 we cal-
culate, by perturbation theory, the phase sensitivity of the
Mott insulator in a disordered potential.

3.2.2 Mean values and statistics of the phase sensitivity

The critical values Uc of the interaction strength are sam-
ple dependent. Therefore, for a given value of U we have a
very different behavior for the samples where U is close to
a critical value than for those where it is not. Mixing the
two situations leads to a widely fluctuating distribution of
D(U) and if we average logarithms, as usually done in the
localized regime, we obtain the smooth curve of Fig. 5. We
have checked that the probability distribution of D(U) is
in fact log-normal (see insets of Fig. 7).

In Figure 6 we see that, for a given size and filling
(M = 20, N = 10), the log-average 〈logD(U)〉 increases
while decreasing the disorder (W = 9, 7 and 5). For U = 0
we have the usual non-interacting behavior, while for large
U the phase sensitivity becomes only weakly dependent
on disorder (we will get back to this point in Sect. 4.3).
We also see that 〈logD(U)〉 decreases with the interaction
strength U , except for small U (U . t) and strong disor-
der (W = 9 and 7). The regions for U ≈ t, for W = 9
and 7, are blown up in the insets (lower left and upper
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3.2

3.1
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W =9

Fig. 6. Mean values of logD(U) for M = 20, N = 10 and
three values of the disorder strength: W = 5 (triangles), W = 7
(squares) and W = 9 (circles). Upper and lower insets: blow
up of the small-U region for the last two cases showing a delo-
calization effect.

right respectively), and show that the interaction scale for
the first charge reorganization is weakly increasing with
the disorder. The delocalization effect increases with the
value of the disorder, but it is always very small. Our re-
sults for the average phase sensitivity are consistent with
those of reference [26], finding a small increase of the av-
erage persistent current in small 1D systems (up to 5 elec-
trons on 10 sites) by direct diagonalization. We show in
our work that such an effect persists in larger systems and
its small magnitude is to be contrasted with the spectac-
ular enhancement found in individual samples.

The small delocalization effect on the average phase
sensitivity together with the large sample-to-sample fluc-
tuations makes it necessary to consider many impurity
realizations (up to 5000) in order to confirm the enhance-
ment beyond the statistical uncertainty. Comparing the
information from Figures 3 and 6 we see that the average
delocalization effect is more easily seen on the less fluctu-
ating correlation parameter γ than on D.

The widely fluctuating values of D(U) can be repre-
sented to a very good approximation by a log-normal dis-
tribution for values of U smaller than 8 (Fig. 7). The
variances σ2(U) = 〈δ(logD(U))2〉 are of the order of
|〈logD(U)〉|. They increase slowly with U in the region
of U . t (roughly the interval over which we see the delo-
calization effect), and more rapidly for larger values of U
(where the effect of the disorder becomes less important).
Once the Mott regime is attained σ2 no longer increases
with U (and becomes strongly dependent on W ).

For a given sample the ratio between the phase sensi-
tivity at a value of U 6= 0 and at U = 0 is also a widely fluc-
tuating variable. Our numerical simulations (not shown)
demonstrate that the variable η = log(D(U)/D(0)) is nor-
mally distributed [41]. Such a behavior does not simply fol-
low from the log-normal distributions for D(U) and D(0),

U

<

�
2
(U
)
>

logD(0)

P W = 9

logD(2)

P

W = 9

Fig. 7. Variance of the phase sensitivity as a function of U for
three values of the disorder strength: W = 5 (triangles), W = 7
(squares) and W = 9 (circles). Upper and lower insets: proba-
bility distribution (dots) of logD(0) and logD(2) respectively,
calculated from 10 000 samples (M = 20, N = 10,W = 9).
The mean values and variances are 〈logD(0)〉 ≈ −4.486,
σ2(0) ≈ 1.49 and 〈logD(2)〉 ≈ −4.495, σ2(2) ≈ 1.66. The solid
lines represent Gaussian distributions with these parameters.

since these are not independent random variables. The
width of the η-distribution is increasing with U , and for
U = 2 variations of D over more than an order of mag-
nitude are typical [41]. The samples a and b shown in
Figures 3 and 5 are characterized by extremely small and
large values of η, respectively, while c and d are typical
samples chosen around the center of the distribution.

3.2.3 Size dependence and thermodynamic limit

In the previous sections we described the increase of the
phase sensitivity as a signature of the charge reorganiza-
tions that eventually lead to a Mott insulator upon in-
creasing the interaction strength. On the other hand, as
discussed in Section 3.1.3, in the thermodynamic limit the
disorder will lead to defects in the Mott phase at any finite
value of U . Two questions naturally arise at this point.
Firstly, do charge reorganizations still exist and yield an
enhancement of the phase sensitivity as we go to larger
and larger systems? Secondly, will the delocalization ef-
fect survive in the thermodynamic limit?

In order to address the first question, we consider in
Figure 8 the typical case of a sample with a strong disorder
(W = 7). The actual realization of the impurity potential
is sketched at the bottom panel (thick solid) for lattice
sites going from i = 1 to i = 40. If we consider a sample of
half such a size (M = 20) at half filling (N = 10) we obtain
for the charge density (upper left panel) and for the phase
sensitivity (filled squares, upper right panel) the kind of
behavior previously discussed. A first charge reorganiza-
tion takes place around U = 1 where a peak in D(U) is
observed. If we now consider the whole sample (M = 40)
at the same filling (N = 20), logD(0) as well as the overall
values of logD(U) are reduced by a factor of 2, but the
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Fig. 8. Charge density as a function of the lattice site at half filling for a sample with M = 20, N = 10 (upper left panel) and
with M = 40, N = 20 (central panel) with the impurity configuration vi represented by a thick solid line in the lower panel
(W = 7). Stars and dotted lines correspond to ρi(U = 0), while pluses and solid lines to ρi(U = 3). In the upper right panel
the (decimal) logarithm of the charge sensitivity as a function of U is shown for the two samples: M = 20 (filled squares) and
M = 40 (empty squares).

charge reorganization involving the first half of the sample
still takes place (medium panel) giving rise to a sharper
peak of D(U) at a slightly shifted critical value (empty
squares, upper right panel). This resonant-like behavior
is generic. Upon increasing the sample size the peaks
of D(U) become sharper (and slightly shifted), and new
charge reorganizations may yield supplementary structure
in D(U) (like the shoulder observed around U = 7).

Having answered the first question for the affirmative
we still need to settle the second one, since it is not obvious
that the sharper peaks yield a delocalization effect on the
average. A detailed size-dependence study is needed, and
we will focus on the interaction dependence of the local-
ization length. In the absence of interactions, a 1D disor-
dered system is an Anderson insulator, with the electron
wave-functions localized on the scale of the one-particle
localization length ξ1. Then, the persistent current and
the phase sensitivity scale with the system size M pro-
portional to exp (−M/ξ1) [33].

For our many-particle system, the (many-body) local-
ization length ξ(U) depends on the interaction strength
and can be defined from the scaling

〈lnD(U,M)〉 = A(U)− M

ξ(U)
, (12)

which in the non-interacting case (U = 0) yields the stan-
dard one-particle localization length characterizing the
spatial decay of the electron wave-functions. The previous
scaling is well satisfied in the accessible space of parame-
ters [43] and allows to extract the values of A(U) and ξ(U).
The former is weakly dependent on U for 0≤U ≤ 5 and
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Fig. 9. Localization length obtained from the size-dependence
of the phase sensitivity (Eq. 12) as a function of the interac-
tion strength U for half filling and two values of the disorder:
W = 7 (squares) and W = 9 (circles). Inset: blow up of the
small-U region for the case of W = 9 showing a delocalization
effect on ξ.

more strongly dependent for U>5. The localization length
exhibits a similar behavior as 〈logD(U)〉. It decreases with
the interaction strength except for small U and strong dis-
order, where a small delocalization is observed (Fig. 9).
For W = 9 (where the single-particle localization length
is smaller than 2 lattice sites) a small repulsive interaction
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results in a 2% effect on ξ, for W = 7 the delocalization
effect is smaller, consistent with the behavior of D(U). We
therefore conclude that the delocalization on the average
is not a finite-size effect.

4 Physical mechanisms

We have seen in the previous chapter how upon increas-
ing the strength of the electron-electron interaction we go
from the Anderson to the Mott insulating regimes through
non-trivial transitions. In particular, our numerical simu-
lations show that the intermediate regime is signed by
charge reorganizations associated to an enhanced phase
sensitivity. In this chapter we will try to understand the
mechanism underlying such behavior and we will develop
a perturbation theory yielding the phase sensitivity in the
Mott regime in the presence of disorder.

4.1 Simplified model of two particles on three sites

The relation between charge reorganization and enhanced
persistent current can be understood in a simple toy model
of two particles (spinless fermions) on three sites. We con-
sider the Hamiltonian of equation (9) with M = 3 and
switch off the interaction between the extreme sites 1
and 3. Therefore, we write

H(3) = −t
3∑
i=1

(c†i ci−1 + c†i−1ci) +
3∑
i=1

vini + U
3∑
i=2

nini−1.

(13)

We keep the twisted boundary conditions, c0 = exp(iΦ)c3
that allow us to address the phase sensitivity. The site-
dependent interaction mimics the fact that in the large-
M case the sites 1 and 3 are joint through the rest of the
chain (that we do not include in the description of the
present model).

For two spinless fermions on three sites
the Hilbert space has dimension 3 and the set
{|1, 1, 0〉, |1, 0, 1〉, |0, 1, 1〉} is a convenient basis spec-
ifying the occupation of the sites. We can readily
diagonalize our 3 × 3 matrices for any value of our
parameters t, U and vi. However, in order to simulate the
localized regime we will only consider the case where at
least one of the on-site potentials vi is much larger than
the kinetic energy scale t. We then study the transition
from U = 0 (where the potentials vi determine the charge
distribution) to values of U much larger than all the vi
(where the ground state is mainly directed along the
vector |1, 0, 1〉 in order for the electrons to avoid each
other).

4.1.1 Three-site model with fixed impurity configuration

In a first step we further simplify our problem by restrict-
ing the disorder to v1 = v2 = −ε and v3 = ε� t. This

configuration clearly favors the state |1, 1, 0〉 at U = 0.
In the two extreme cases the ground state energies are
given by

E(U = 0) '
(
−2
(ε
t

)
−
(
t

ε

)
+

1
2

(
t

ε

)2

cosΦ

)
t, (14a)

E(U�ε) '
(
−2
(
t

U

)
− 2

(
εt

U2

)
+ 2

(
t

U

)2

cosΦ

)
t,

(14b)

The term −2ε in equation (14a) is the on-site energy of
the state |1, 1, 0〉, the next order terms in t/ε take into
account the energy gain due to hopping. In the large-U
case there is no term in ε since the ground state is close to
|1, 0, 1〉 and we have chosen v1 = −v3. From equations (14)
we can calculate the phase sensitivity in the two limiting
cases and obtain

D(0) ' 3
2

(
t

ε

)2

t� D(U�ε) ' 6
(
t

U

)2

t, (15)

in agreement with the fact that the phase sensitivity in
the Mott phase is reduced with respect to that of the
Anderson phase. However, the decrease of D with U is
not monotonous; for the critical value Uc = 2ε we have a
degeneracy that leads to an increased phase sensitivity:

D(Uc) ' 3
2

(
t

ε

)
t� D(0). (16)

The enhancement factor η = D(Uc)/D(0) is then given by

η = ε/t = Uc/2t, (17)

and even though both, D(Uc) and D(0) decrease when the
disorder strength ε/t is increased, their ratio is increasing.

Our toy model then captures the physics of a charge re-
organization associated with an enhanced sensitivity with
respect to a perturbation at a point of degeneracy. The ef-
fect is reminiscent of the Coulomb blockade phenomenon.
When the occupation numbers are approximately good
quantum numbers (0 or 1) transport is blocked; in the
transition between such extreme configurations the occu-
pation numbers are no longer good quantum numbers and
transport is favored. In the Coulomb blockade problem we
have a true transport situation and the degeneracy is be-
tween the state having N electrons in the dot and 1 in
the leads with the state having N +1 electrons in the dot.
Moreover, the constant charging energy model [55] allows
us to think in terms of a one-particle problem. In our case
we do not have a transport configuration but a delocal-
ization of wave-functions and the degeneracy is between
many-body ground states of the ring.

4.1.2 Disorder average in the three-site model

The result above for a given potential realization can be
used to determine the ensemble average of the critical in-
teraction strength Uc within this toy model.
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First of all, we relax the restriction to the disorder
realizations, allowing for arbitrary on-site energies vi ∈
[−W/2,W/2], assuming box-distributions with probabil-
ity density

P (v) =
1
W

Θ(W/2− |v|). (18)

For symmetry reasons, the exchange of the values v1 ↔ v3

leaves D(U) unchanged and we consider always v1 > v3.
No level crossings between the ground state at U = 0

(adapted to the disorder configuration), and the ground
state at U � W (close to |1, 0, 1〉), occurs when the dis-
order realization favors the latter already at U = 0. This
is the case if

v2 > v1, v3, (19)

which is fulfilled in 1/3 of the whole parameter space.
Then, no positive Uc exists within our toy-model, and no
enhancement of D(U) with respect to D(0) can be ex-
pected for U > 0.

We now concentrate on the averaged enhancement fac-
tor 〈η〉, where the average is taken over the parameter
space v2 < v1, in which an avoided level crossing occurs.
In the absence of hopping (t = 0), the energies of the
states |0, 1, 1〉 and |1, 0, 1〉 are given by v2 + v3 + U and
v1 + v3, respectively, such that a level crossing occurs at
Uc = v1 − v2. Following the argument of the previous
section, the hopping then leads to a D(U) which is en-
hanced at Uc by the factor η = (v1 − v2)/2t. The average
over the part of the parameter space (v1, v2, v3) in which
v2, v3 < v1, using the box distributions yields

〈η〉 =
3
8
W

t
· (20)

The average enhancement of the phase sensitivity in-
creases proportionally to the disorder strength, as the av-
erage peak position, 〈Uc〉 = (3/4)W . This behavior is con-
sistent with our numerical findings for larger systems.

4.2 Avoided level crossings

In the toy model presented in the previous section we saw
how an enhanced phase sensitivity is linked with a charge
reorganization of the ground state. The charge reorgani-
zation took there a very simple form: at a certain critical
value of the interaction strength an electron jumps from
one site to its neighbor. Or, more precisely, the ground
state that was, for small U , mainly given by the vector
|1, 1, 0〉 became, after Uc, approximately aligned in the di-
rection of |1, 0, 1〉. That can be seen as a crossing of two
levels as a function of the parameter U . In this section
we go back to our numerical simulations for large M and
demonstrate that the physics of level crossings is still valid
despite the fact that the charge re-accommodation is not
necessarily local (i.e. the electron may jump many sites
across).

d

U

lo
g
D

lo
g
�

Fig. 10. The energy spacing ∆ between the ground state and
the first excited state of sample d of Figures 1, 3 and 5 (upper
line) together with the corresponding phase sensitivity (lower
line).

The sharp changes in the ground state structure and
the peaks observed in the phase sensitivity are the conse-
quences of avoided crossings between the ground state and
the first excitation, obtained upon increasing U . While the
ground state at weak interaction is well adapted to the dis-
ordered potential, another state with a different structure
and better adapted to repulsive interactions, becomes the
ground state at stronger interaction. In the case of large
disorder, with a one-particle localization length ξ1 which
is of the order of the mean distance between the particles,
the overlap matrix elements between the different nonin-
teracting eigenstates due to the interaction are very small
and the levels almost cross. There is only a very small in-
teraction range where a significant mixing (hybridization)
of two states is present. This is exactly where the peaks
of the phase sensitivity appear.

This scenario is confirmed by Figure 10, where the
phase sensitivity D and the energy level spacing ∆ be-
tween the ground state and the first excited state are
shown as a function of U for sample d. Here, we used
the Lanczos algorithm for direct diagonalization in order
to obtain the energies of a few excited states.

Minima of ∆ appear at the interaction values of the
peaks in the phase sensitivity. A gap of increasing size
opens between the ground state and the first excitation
after the last avoided crossing at interactions U > Um,
when the Mott insulator is established. A study of many
other samples leads to the same conclusions. The statistics
of the first excitation energy is therefore determining the
behavior of the phase sensitivity. In 2D with Coulomb
repulsion, this has recently been addressed giving rise to
intermediate statistics [56] at the opening of the quantum
Coulomb gap.

The importance of level hybridization in determining
the persistent current of many-particle systems has also
been demonstrated in reference [57] within a slightly dif-
ferent model: A ring enclosing a magnetic flux coupled to
a side stub via a capacitive tunnel junction. In particular,
it was shown that the passage through the hybridization
point is associated with the displacement of charge in real
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space, and also that strong enough Coulomb interactions
can isolate the ring from the stub, thereby increasing the
persistent current.

4.3 Phase sensitivity in the Mott insulator

4.3.1 Perturbation theory in t/U

In the non-interacting limit, disorder leads to Anderson
localization and the problem can be treated by an expan-
sion in terms of t/W [58]. In the Mott insulator limit, the
interaction dominates, and it is possible to use an expan-
sion in terms of t/U . In this second regime we decompose
the Hamiltonian of equation (9) as

H = H0 +H1 (21)

with an unperturbed part containing disorder and inter-
action

H0 =
M∑
i=1

vini + U
M∑
i=1

nini−1 (22)

and the perturbation given by the hopping term

H1 = −t
M∑
i=1

(c†i ci−1 + c†i−1ci). (23)

The solutions of the unperturbed part H0 are simple.
The eigenstates are products of on-site localized Wannier-
states for each particle

|ψα〉 =

(
N∏
k=1

c†ik(α)

)
|0〉 (24)

(|0〉 is the vacuum state) and the corresponding eigenen-
ergies are given by

Eα =
N∑
k=1

vik(α) + UNNN(α). (25)

NNN(α) is the number of particle-pairs in the configura-
tion α which occupy nearest-neighbor sites.

It is important to notice that, in contrast to H0, the
perturbing part H1 depends on the boundary condition
c0 = exp(iΦ)cM . For periodic (p, Φ = 0) and anti-periodic
(ap, Φ = π) boundary conditions one obtains

Hp
1 = −t

M∑
i=2

(c†i ci−1 + c†i−1ci)− t(c
†
1cM + c†Mc1) (26)

and

Hap
1 = −t

M∑
i=2

(c†i ci−1 + c†i−1ci) + t(c†1cM + c†Mc1), (27)

respectively.

The nth order correction to the phase sensitivity is
given by

Dn(U) = (−1)N
M

2
(Ep

n −Eap
n ), (28)

where Ep
n and Eap

n are the nth order terms in the per-
turbation expansion of the ground state energies for the
Hamiltonians Hp

1 and Hap
1 , respectively.

4.3.2 Phase sensitivity without disorder

The result for the problem without disorder has already
been mentioned in the literature [29]. We present here its
derivation and generalize it to the case with disorder. In
the limit t/U = 0, the ground state of our Hamiltonian at
half filling is given by a regular array of charges without
nearest-neighbor sites simultaneously occupied. There are
two possibilities to realize such an array, either all the
particles seat on the odd sites of the chain

|ψo
0〉 =

(
N∏
k=1

c†2k−1

)
|0〉, (29)

or the N particles are on the even sites

|ψe
0〉 =

(
N∏
k=1

c†2k

)
|0〉. (30)

These states both have zero energy and therefore, in or-
der to study the effect of the boundary conditions, we
have to use degenerate perturbation theory in the sub-
space spanned by |ψo

0〉 and |ψe
0〉. For each boundary con-

dition, we can build the perturbation expansion in t from
the matrix elements

Hs,s′

n = (31)∑
α1,α2,...,αn−1

〈ψs
0|H1|ψα1〉〈ψα1 |H1|ψα2〉 . . . 〈ψαn−1 |H1|ψs′

0 〉
(E0 −Eα1)(E0 −Eα2) . . . (E0 −Eαn−1)

,

with s, s′ = {o, e} and H1 given by Hp
1 or Hap

1 depending
on the value of φ (0 or π, respectively). The sums run over
all the eigenstates α of H0 except the two degenerate ba-
sis states (29) and (30). There are two different types of
matrix elements: the diagonal ones (He,e

n and Ho,o
n , start-

ing and finishing at |ψe
0〉 and |ψo

0〉, respectively), and the
off-diagonal ones (Ho,e

n and He,o
n , starting and ending at

different states).
The numerators of equation (31) contain matrix el-

ements 〈ψαi |H1|ψαi+1〉 of the perturbing Hamiltonian.
Since H1 consists of one-particle hopping terms, non-zero
matrix elements can arise only if the two states |ψαi〉 and
|ψαi+1〉 differ by nothing else than the position of one of
the particles. In addition, since the hopping terms allow
only hopping to adjacent sites and we are dealing with
spinless fermions, the order of the particles on the chain
is conserved in the subsequent hoppings.
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Fig. 11. A lowest order sequence contributing to the phase
sensitivity for the example of N = 3 and half filling.

In Figure 11 we sketch a sequence of states α con-
necting |ψo

0〉 with itself for an n = 6 diagonal contribu-
tion. The first three steps of the sequence, connecting |ψo

0〉
and |ψe

0〉, represent an off-diagonal contribution to n = 3.
We indicate with U the interaction energy associated with
each of the intermediate states of the sequence. Generally,
the sequences in the states α can go “forward” and/or
“backwards”. For instance, a possible term contributing
to n = 2 is that in which after the state α1 we go di-
rectly back to |ψo

0〉. However, since we are interested in
the difference between periodic and anti-periodic bound-
ary conditions, it is only the φ-dependent terms that are
relevant. That is, those involving a hopping between the
sites M and 1.

In the case of periodic boundary conditions all the
hopping terms have a negative sign. Thus, the numera-
tors appearing in equation (31) are proportional to (−t)n.
For anti-periodic boundary conditions the numerators are
proportional to (−t)n(−1)hb , where hb is the number of
hoppings across the boundary between the sites M and 1.
Therefore, the corrections to the ground state energy due
to the presence of finite hopping are the same for both
boundary conditions, except for the contributions to the
sums with odd hb. These last contributions are the only
ones relevant for the finite phase sensitivity.

The sequences with n < N yield vanishing non-
diagonal matrix elements, since we need at least N hop-
pings to go between |ψo

0〉 and |ψe
0〉. In the diagonal matrix

elements with n < M the sequences are such that each
particle returns to its starting point, by doing forward and
backward hoppings, and therefore hb is necessarily even.
Thus, these diagonal matrix elements are independent on
the boundary condition, and in addition Ho,o

n = He,e
n (the

denominators do not depend on the boundary condition,
nor on the initial state).

The above described behavior of diagonal and non-
diagonal matrix elements shows that the degeneracy is
not lifted for n < N . The lowest order in the perturbation
expansion which lifts the degeneracy, and at the same time
yields a contribution to the phase sensitivity, is n = N . For
this order of the perturbation we have finite non-diagonal
matrix elements given by sequences where each of the par-

ticles is moved by one site, the final state being the other
basis state of the degenerate subspace. The connection
between the two states |ψo

0〉 and |ψe
0〉 can be done by a

sequence where all the particles hop forward, and also by
a sequence of backward hoppings. If one of these two se-
quences crosses the boundary (yielding hb = 1, changing
the sign in the case of anti-periodic boundary conditions),
the other does not (yielding hb = 0).

For the sequences that go between |ψo
0〉 and |ψe

0〉 cross-
ing the boundary, either with periodic or anti-periodic
boundary conditions, we have to consider an additional
sign (−1)N−1 arising from the permutations needed to re-
cover the initial ordering of the fermionic operators in the
final state. For an odd number of particles N and anti-
periodic boundary conditions, the contributions of the
forward and backward sequences cancel each other and
Ho,e
N = He,o

N = 0, while with periodic boundary conditions
both sequences add and we have non-zero off-diagonal ma-
trix elements that lift the degeneracy. For an even num-
ber of particles, the opposite behavior occurs: The non-
zero off-diagonal matrix elements are those corresponding
to anti-periodic boundary conditions. In this way there
is a difference between periodic and anti-periodic bound-
ary conditions for all possible values of N . The correc-
tions to the ground state energies are given by the lowest
eigenvalue of the matrices HN . Since the diagonal matrix
elements are the same, and independent of the boundary
conditions, for odd N we have Ep

N−E
ap
N < 0, and for even

N we have Ep
N − E

ap
N > 0. These signs ensure that DN

is positive, in agreement with a general theorem proposed
by Leggett [37] and the result for a Luttinger liquid [38],
fixing the sign of Ep −Eap according to the parity of the
number of electrons.

The splitting of the energy levels (and therewith the
phase sensitivity) is given by the size of the off-diagonal
matrix elements, which we estimate in the sequel. At
half filling, the ground state configurations are the only
ones which do not contain any nearest-neighbor sites si-
multaneously occupied, and their interaction energy van-
ishes. The eigenenergies of the excited states of H0 are
Eα = U, 2U, 3U . . . , depending on the number of particles
placed next to each other. Thus, the absolute values of
the denominators in equation (31) are of the order Un−1.
We have shown that the numerators are of order tn, there-
fore, the parametric dependence of the lowest order (Nth)
correction to the phase sensitivity is given by

DN (U) ∝ U
(
t

U

)N
(32)

with an M -dependent prefactor, in agreement with the
result mentioned by Tsiper and Efros [29]. Since higher
order (n > N) terms contain higher powers of t/U , the
result (32) is the leading correction in the limit of strong
interaction t/U � 1.

4.3.3 Phase sensitivity with disorder

The Mott insulator survives the introduction of disorder
only for finite-size samples and not too strong disorder
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Fig. 12. The dependence of the phase sensitivity on the
interaction strength for the samples b,c, and d of Figures 3
and 5, at half filling (N = 10, M = 20, W = 9), in
double-logarithmic representation. Sample a exhibits the same
asymptotic power law, but with a much smaller prefactor such
that the corresponding curve lies outside the scale of the fig-
ure. The dashed line shows the perturbatively predicted slope
D(U) ∝ 1/U2N−2.

such that U > W
√
N . We will place ourselves in this

regime in order to calculate perturbatively the phase sen-
sitivity. The analysis presented for the clean case must be
modified, and leads to a qualitatively different result. First
of all, the two different possibilities to realize the regular
array of charges will still be the energetically lowest con-
figurations in the limit of strong interaction U � t,W ,
but the two states |ψo

0〉 and |ψe
0〉 are no longer degenerate.

Their energies at t = 0 are given by

Eodd =
N∑
k=1

v2k−1 and Eeven =
N∑
k=1

v2k, (33)

respectively, and differ typically by W
√
N . If this differ-

ence is much larger than their coupling due to the hopping
terms (which, according to a perturbative argument like
the one presented above, is of the order of tN/UN−1), the
ground state is given by one of the two base states, but
not by a superposition of them. For N sufficiently large,
or in the limit of large U where we are working, this is
always true.

As a consequence, one can use standard non-
degenerate perturbation theory and only sequences of hop-
ping terms with hb 6= 0 which connect the ground state
to itself can give rise to a phase sensitivity. The lowest
order contribution to the phase sensitivity must include
now M = 2N hopping terms to translate each of the par-
ticles starting at odd (or even) sites by two sites such that
the final configuration is equal to the initial one. This se-
quence contributes in equation (31) to the diagonal matrix
element, connecting the ground state (|ψo

0〉 or |ψe
0〉) with

itself, proportionally to (−t)M (−1)N−1 in the case of pe-
riodic boundary conditions. In the case of anti-periodic
boundary conditions we must add a sign (−1) associated
with the one traversal of the boundary. In contrast to the

clean case, forward and backward sequences always cross
the boundary and yield contributions of the same sign
to the diagonal matrix elements. Since the denominators
do not depend on the boundary conditions, the difference
Ep
M −E

ap
M has the correct sign [37] to yield a positive DM .

As illustrated in Figure 11, one of the intermediate
states can be the regular array with the opposite parity
than the initial state. The energy difference associated to
this state is not U (like for all the other intermediate states
with nearest-neighbor sites occupied) but |Eodd − Eeven|.
The denominator containing the lowest power of U is then
of the order WU2N−2 yielding

D2N(U) ∝ U
(
U

W

)(
t

U

)2N

, (34)

as the dominating behavior when U�t,W . This is verified
in our numerical simulations (Fig. 12) when considering
individual samples after their last charge reorganization.
The weak dependence with respect to W can be seen from
the large-U behavior in Figure 6.

4.3.4 Localization length for the Mott insulator

From the exponential size-dependence of equations (32)
and (34), one can extract the localization length in the
Mott insulator. Imposing the size scaling of equation (12)
we obtain for large M a localization length

ξclean = 2
(

ln
(
U

t

))−1

, (35)

in the clean case, while with disorder we have

ξdirty = 1
(

ln
(
U

t

))−1

. (36)

Both typical lengths shrink with increasing interaction
strength. Interestingly, the presence of disorder reduces
the localization length of the Mott insulator to one half
of the clean value, independent of the disorder strength
W . It is important to recall that the size-dependence that
yields the typical length ξdirty of equation (36) has to be
restricted to the condition U > W

√
N > tN/UN−1, al-

lowing N to vary over several orders of magnitude when
U is large. ξdirty describes the exponential decrease of D
with the system size within this range.

The logarithmic dependence of the localization length
on the interaction parameter is also found for the Hubbard
model in a clean one-dimensional system [59] as well as in
a disordered 2D model with Coulomb repulsion [60].

5 Dependence on filling

In the previous sections we have been mainly concerned
with the interaction effects of spinless fermions at half fill-
ing. At half filling, and with strong disorder, a short-range
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Fig. 13. Phase sensitivity D(U) for four samples with the
impurity configurations of those of Figure 5, but with only
N = 9 particles (M = 20, W = 9). The average over many
samples is represented by the thick dots.

interaction has a dramatic effect on the charge density.
We have seen that reducing the disorder increases the
localization length and results in less important charge
reorganizations. Reducing the electron density increases
the inter-particle distance, making a short-range interac-
tion less effective. In this section we analyze the effect of
short-range interactions as we move away from the opti-
mal conditions of strong disorder and half filling.

5.1 Fillings close to one half

In Figure 13 we present the phase sensitivity for strong
disorder (W = 9) and a filling close to one half (N = 9,
M = 20). In analogy with the case of half filling presented
in Figure 5, we see strong peaks of D for individual sam-
ples and a broad maximum for the average values (thick
dots). We therefore confirm that the physics of charge re-
organizations is robust, and it is not a simple commensu-
rability effect restricted to half filling.

5.2 Phase sensitivity in the large-U limit

The similarities between Figures 5 and 13, that we have
pointed out above, concern the charge reorganizations and
the corresponding peaks of D for relatively weak interac-
tions (of the order of t). In the large-U limit there ap-
pear some differences between the cases of half filling and
less than half filling. For instance, we can see a tendency
towards saturation of D(U) for the samples a and c of
Figure 13. In fact, in a larger U -range we observe that
all the curves for densities less than one half saturate for
sufficiently large U .

This saturation is easy to understand from the per-
turbative analysis given in Section 4.3. In the sequence of
intermediate states |ψα〉 contributing to each of the terms
in equation (31) (one of them represented in Fig. 11) we
readily see that at less than half filling it becomes possible

to move the particles one after the other on the chain with-
out ever having two particles on neighboring sites. These
sequences give boundary condition dependent contribu-
tions to En without any dependence on U in the denom-
inators (E0 − Eαi). Since they are the only contributions
which survive in the large-U limit, they define the value
at which the phase sensitivity saturates.

The same happens at more than half filling, when al-
ready the ground state contains the minimum number
2N−M of nearest neighbors. Here, it is possible to trans-
late all of the particles at constant interaction energy
thereby leaving U -independent contributions to (31).

5.3 Charge reorganization at high disorder

Repulsive interactions give rise to charge reorganizations
when the non-interacting ground state fixed by the dis-
order configuration is not well adapted (energetically) to
a finite value of U . Assuming a very strong random po-
tential, such that the one-particle states are close to on-
site Wannier states, the ground state of N particles on
M ≥ 2N sites (more than half filling can be treated simi-
larly, using the particle-hole symmetry) at U = 0 is given
by the particles occupying the N lowest sites. The posi-
tions of these N sites on the ring are random. No reorga-
nization of the ground state due to short-range repulsive
interaction takes place when this configuration does not
contain any two particles on neighboring sites.

The probability for obtaining such a configuration can
be calculated as follows. One starts from the configuration
where the particles occupy the N first odd sites of the ring
{1, 3, . . . , 2N−1} and each of the particles has ‘his’ empty
even site on its right. Then, M − 2N empty sites are still
available which can be distributed among the N gaps on
the right hand side of the particles, and we obtain

Ω =
M

N

(
M −N − 1
M − 2N

)
(37)

different possible configurations without nearest neigh-
bors. The factor of M/N arises because of the M -fold
translational symmetry of the problem and the indistin-
guishability of the N particles.

Since the total number of possibilities to place N spin-
less fermions on M sites is given by

T =
(
M
N

)
, (38)

the probability to have a configuration without nearest
neighbors in a given sample is

P =
Ω

T
=
M

N

(
M −N − 1
M − 2N

)
(
M
N

) · (39)

Introducing the filling factor x = N/M , and us-
ing Stirling’s approximation for the evaluation of the
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Fig. 14. Phase sensitivity for ten samples with quarter-filling
(N = 5, M = 20) and strong disorder (W = 9). Roughly half
of the samples exhibit a peak in D(U) (solid lines), while the
other half yield a monotonously decreasing phase sensitivity.

factorials, we find

P ' eMg(x) with g(x) = ln
(

(1− x)2(1−x)

(1− 2x)(1−2x)

)
. (40)

Since g(x) is negative for all 0 < x ≤ 1/2, we obtain always
P = 0 in the thermodynamic limit M → ∞ at constant
filling x. Therefore, in the case of strong disorder (W � t),
the probability to obtain a charge reorganization due to
repulsive interactions is one in the thermodynamic limit,
at arbitrary filling.

In Figure 14 we consider the case of strong disorder
(W = 9) and quarter filling (M = 20, N = 5). For large
U we observe the saturation of D(U) described in the pre-
vious chapter. In the regime of smaller U > 0 we observe
samples for which there is a peak in D(U) (exhibiting
also a charge reorganization) and others in which D(U)
is a monotonously decreasing function. In the former case
the U = 0 configuration has nearest-neighbor sites that
are occupied, while in the latter there is no occupancy of
nearest neighbors in the non-interacting problem, and by
increasing U we do not achieve any substantial charge re-
organization. A systematic study over many samples with
the conditions of Figure 14, yields a probability of about
0.5 to obtain a sample which does not present a peak in
D(U), while equation (39) predicts P ≈ 0.26. This dis-
crepancy can be traced to the fact that equations (39)
and (40) are valid in the limit of a very strong disor-
der W � t. For the parameters used in Figure 14 it is
not always true that the N particles occupy the N sites
with lower electrostatic potential, since the non-zero ki-
netic energy can split the two levels associated with two
neighboring sites if their on-site energies are closer than t
(i.e. when a local potential well is formed by two nearly-
degenerate sites). This splitting reduces the probability
to have two adjacent sites occupied in the non-interacting
ground-state.
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Fig. 15. Thin lines: three samples (a, b and c) with M = 40,
N = 10 and W = 4. Thick lines: three samples (a’, b’ and c’)
with M = 40, and N = 10 obtained by scaling the previous
impurity potentials from W = 4 to W = 5. Thick solid line
and dots: average of log(D) for W = 5.

5.4 Low fillings - weak disorder

We have analyzed above the limit of very strong disorder,
when the one-particle states are almost completely local-
ized on one of the sites. We have seen that in this regime
a short-range interaction leads to a charge reorganization
whenever two neighboring sites are occupied at U = 0.
Therefore, in finite size samples, the probability of having
peaks in D(U) is maximum at half filling. At weaker dis-
order, and without interaction, the particles are localized
over several sites. The occupation of a site is no longer an
almost good quantum number (0 or 1) and turning on a
short-range interaction does not always result in a charge
reorganization.

In Figure 15 we present the case of quarter filling
(N = 10, M = 40) for three samples (a, b and c) with a
disorder W = 4, and another three samples (a’, b’ and c’)
obtained from the first ones by scaling the impurity poten-
tials to W = 5. For instance, the configurations of samples
a and a’ are obtained from the same set of random num-
bers, and it is only the overall scale of the fluctuations that
changes. For certain samples (like c) the non-interacting
system has all the electrons localized far away from each
other and the charge configuration does not change when
turning on the interactions, resulting in a monotonously
decreasing D(U). On the other hand, in other samples
(like a and b) the non-interacting one-particle wave func-
tions overlap considerably and the appearance of a short-
range interaction results in a charge reorganization. In all
cases we appreciate the saturation of D(U) for large U , as
discussed in 5.2.

Going from W = 4 to W = 5 for each of the samples
changes the details of the curves, but not their nature. For
instance, the peaks of a’ and b’ are obtained for stronger
interactions than those of a and b. Such a behavior is un-
derstandable since higher disorder within the same ran-
dom configuration necessitates a stronger interaction to
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produce a charge reorganization. If we keep increasing W
for a sample exhibiting a peak, we obtain sharper reso-
nances at increasing values of the interaction. Of course,
for all samples, the typical values of D are reduced when
increasing W . Decreasing the disorder below W = 4 re-
sults in broader peaks, that disappear once the localiza-
tion domain of the individual wave-functions becomes of
the order of the inter-particle distance. The presence of
peaks in the phase sensitivity is therefore fixed by the im-
purity configuration of the sample, and independent of the
strength of the disorder in some range of W .

The different behaviors obtained among the samples
with a given value W of the disorder are responsible for
the fact that the average phase sensitivity (〈logD(U)〉,
thick dots in Fig. 15) decreases monotonously with the
interaction strength, instead of exhibiting the broad max-
imum obtained for half filling and high disorder. We have
seen that in the limit of very strong disorder it was possi-
ble to give a crude estimation of the probability to have a
sample that presents a peak in D(U). Once the disorder is
weak enough to have single-particle states localized over
several sites, we know that such a probability decreases,
but it is rather difficult to extend the previous analysis
in order to give an estimation of it. The relevant param-
eters are the one-particle localization length ξ1, fixed by
the disorder, and the inter-particle distance 1/kF, fixed by
the electron filling. As a function of these two parameters
we can clearly distinguish two cases:

(i) When ξ1 becomes much smaller than 1/kF, the
charge density without interaction in finite size samples
is more and more likely to consist of N distant peaks.
Since such configurations are well adapted to the inter-
acting case as well, the probability to find reorganizations
of the ground state due to the interaction is reduced.

(ii) In the opposite case, when ξ1 becomes much larger
than 1/kF, no distinct one-particle peaks are present in
the charge density at U = 0, and there are no regions of
the sample with very small charge density. While increas-
ing U , the total energy is minimized by gradually pushing
the particles away, but there are no sudden charge reorga-
nizations accompanied with peaks of the phase sensitivity.
This behavior leads to a smooth decrease of D(U).

Between the two previous cases, we find the optimal
situation, kFξ1 ≈ 1, to observe the delocalization effect of
interactions. This rough criterium is based on mean values
(filling N/M and disorder W ) and only fixes the proba-
bility to obtain peaks in D(U). The occurrence, or not,
of charge reorganizations depends on the specific sample.
That is, on the random configuration of the impurity po-
tential. We have seen that if a given sample exhibits a peak
of D(U), such a behavior is maintained over some range of
values of the disorderW (small enough not to take us away
from the condition kFξ1 ≈ 1 and into the limits (i) and
(ii) previously discussed). It is worth to notice that the
disappearance of charge reorganizations, that we obtain
upon decreasing the disorder or the electron density, are
tightened to the fact that we work with repulsive nearest-
neighbor interactions. A long range interaction could be

effective in yielding charge reorganizations away from the
optimal conditions of half filling and strong disorder.

6 Conclusions

We have investigated spinless fermions in strongly disor-
dered chains, as a function of the strength of a short-range
repulsive interaction, mainly for densities corresponding
to half filling. Such a system is a Fermi glass (Anderson
insulator) for small values of the interaction (when the dis-
order is the dominant energy scale), and a Mott insulator
when the interaction dominates over the disorder. Using
a powerful numerical method, the density matrix renor-
malization group algorithm, we have been able to address
the transition regime between these two previous limits,
which is not accessible by perturbation theory or mean
field approaches. We have calculated the charge density of
the many body ground state, as well as the dependence of
the ground state energy on the boundary condition. This
last property, quantified by the so-called phase sensitiv-
ity, is related to the transport properties and also to the
persistent current in the chain. It has a small finite value
for the Anderson insulator and decreases with increasing
interaction strength in the Mott insulator.

In striking contrast to the case of weak disorder, where
repulsive interactions always strengthen localization for
spinless fermions in one dimension, we have shown that
in strongly disordered samples, and close to half filling,
the ensemble average of the phase sensitivity can be en-
hanced by a repulsive interaction U . It shows a maximum
at a value UF ≈ t, that is, for interaction strengths of the
order of the kinetic energy scale. The study of the density-
density correlations reveals that the ground state is the
most homogeneous (liquid-like) for U ≈ UF, consistently
with the maximum in the phase sensitivity.

An analysis of different system sizes shows that these
features persist in the thermodynamic limit. Even though
the system stays an insulator for all values of the interac-
tion strength, the size dependence of the phase sensitivity
allows to extract a many-body localization length, which is
slightly enhanced by the interactions and maximum at UF.

While the interaction-induced enhancement of the
phase sensitivity is a rather small effect for the ensemble
average, it can reach several orders of magnitude in indi-
vidual samples, at sample-dependent values Uc. At these
values of the interaction strength, abrupt reorganizations
of the many-body ground state structure occur. The tran-
sition from the Anderson insulator to the Mott insulator,
upon increasing the strength of the repulsive interaction,
is typically made in two steps. In a finite size system, the
first change of the ground state structure at Uc is followed,
at much larger interaction values Um ∝W , by the installa-
tion of the Mott insulator. The interaction strength Um di-
verges in the thermodynamic limit, reflecting the fact that
the perfect order of the Mott insulator is destroyed by an
arbitrarily small amount of disorder in an infinite size sys-
tem. We have found that the reorganizations of the ground
state structure correspond to avoided level crossings be-
tween the many body ground state and the first excited
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state, as a function of the interaction strength. We have
used simple toy-models to clarify the relationship between
avoided crossings, charge reorganizations, and peaks in the
phase sensitivity.

The two limits of weak and strong interaction can
be understood using perturbative schemes. Recently pub-
lished Hartree-Fock results [61] exhibit some qualitative
similarities with our quasi-exact results. However, the
average phase sensitivity is strongly underestimated by
Hartree-Fock at strong interaction values. A direct com-
parison of the phase sensitivity for individual samples [62]
shows that Hartree-Fock is rather accurate for weak inter-
action values up to the first charge reorganization (U <
Uc), but fails for stronger interactions when the ground
state is very different from the non-interacting ground
state. In the regime of very strong interaction, a pertur-
bative development starting from the Mott insulator can
describe quantitatively the phase sensitivity for U > Um.

In contrast, the intermediate regime UF < U < UW

where both, interaction and disorder play an important
role, is intrinsically non-perturbative and more difficult to
analyze. The interplay of interactions and disorder leads to
strong electronic correlations in the intermediate regime,
resulting in a behavior qualitatively different from the two
limiting situations.

In the limit of strong disorder, we were able to pro-
vide a rough estimate of the probability of observing a
charge reorganization in a given sample, as a function
of the particle density and the system size. This shows
that for strong disorder, half filling is the optimal condi-
tion to obtain interaction-induced charge reorganizations.
At lower electronic densities, the probability in finite-size
samples is reduced with respect to this optimal situation.
However, when the disorder strength is reduced simulta-
neously, such that the one-particle localization length is
of the order of the inter-particle distance, the reduction of
the probability is less important. We expect that the use
of a long-range interaction could also favor the occurrence
of charge reorganizations.

We recall the fact that the delocalization effect of re-
pulsive interactions has been predicted in models other
than that of our work: Disordered Hubbard models in
1D [23] and in 2D [63], systems with strong binary disor-
der [44], rings coupled to a side stub [57], and interacting
bosons in a disordered chain [64].

As discussed in the introduction, the understand-
ing of the metal-insulator transition in disordered two-
dimensional systems has been one of our motivations for
this study. Even if our model is much simpler than the re-
alistic problem of interest, it contains non-trivial features
that may be useful to understand the transition, like the
concept of charge reorganization discussed above. The in-
termediate regime that we find between the limits of weak
and strong interactions can be considered as a precursor
of the correlated phase found in numerical studies [13]
of two dimensional disordered clusters (with long-range
Coulomb interaction) when the Wigner molecule is about
to be formed. Consistently with our results, the use of the
Kubo-Greenwood formula and an exact diagonalization in

a truncated basis of Hartree-Fock states [65] yields an av-
erage conductance which is slightly increased by a small
repulsive interaction for spinless electrons in strongly dis-
ordered 2D systems.

Recent experimental measurements of the local com-
pressibility in the localized phase of a two-dimensional
system [66] yielded important spatial inhomogeneities and
very large fluctuations as a function of the carrier density,
while the metallic phase appeared as spatially homoge-
neous and less fluctuating. The strong fluctuations of the
localized phase can be interpreted as charge reorganiza-
tions, very much in line with the interpretation of peaks
in the phase sensitivity that we have thoroughly discussed
in our work.

Since the existing numerical work in two dimensions
relies on some drastic approximations or is restricted to
small systems, it could be useful to extend our numerical
techniques beyond the one-dimensional case. In addition,
the electron spin has been shown experimentally to play
a major role in the metal-insulator transition [9,67], and
it should be interesting to relax the condition of spinless
fermions in order to approach the realistic case.
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Union through the TMR program.
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